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In this lecture, we extend our study of Fourier series on the space L2T0
(R,C) to the more general set L2(R,C). The idea is

to consider aperiodic signals as signals with infinite period.

1 Definition and first properties

Definition 1.1 (Fourier transform)

The Fourier transform is the mapping F from L2(R,C) onto L2(R,C) which to any signal x ∈ L2(R,C) assigns signal

X ∈ L2(R,C) defined by:

∀ω ∈ R X (ω) = F(x)(ω) =

∫ +∞

−∞
x(t)e−iωtdt

Signal X = F(x) is the Fourier transform or spectrum of x .

Remark:

I As stated in this definition, Fourier transform X is generally a complex-valued function, even if signal x is real-valued.

As a consequence, the spectrum is usually represented by two figures, one for the magnitude |X (ω)| of X , and one

for the argument or phase Arg(X (ω)).

I Fourier transform can also be defined as a function of frequency f instead of impulse ω = 2πf . In this case, it is

expressed as:

∀ω ∈ R X (f ) = F(x)(f ) =

∫ +∞

−∞
x(t)e−i2πftdt

Proposition 1.1

The Fourier transform satisfies the following properties:

(i) linearity: for two signals x and y , and two scalars α and β, F(αx + βy) = αF(x) + βF(y);

(ii) symmetry: for any signal x , if we denote x̃ : t 7→ x(−t), then F(x̃) = F̃(x) = F(x∗)∗, which also yields

F(x∗) = F̃(x)
∗
;

(iii) scaling: for any a > 0 and any signal x , setting xa : t 7→ x(at), for any ω ∈ R, F(xa)(ω) =
1

a
F(x)

(ω
a

)
;

(iv) convolution: for any two signals x and y , F(x ∗ y) = F(x)F(y);

(v) pure delay: for any a ∈ R and any signal x , F(τa(x)) : ω 7→ e−iωaF(x)(ω);
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1 DEFINITION AND FIRST PROPERTIES

(vi) time differentiation: for any signal x , F(x ′) : ω 7→ iωF(x)(ω);

(vii) frequency differentiation: for any signal x , setting y : t 7→ −itx(t), then F(y) = (F(x))′

(viii) multiplication: for any two signals x and y , F(xy) =
1

2π
[F(x) ∗ F(y)]

(ix) multiplication by a complex exponential: for any ω0 ∈ R, F(eω0x) = τω0(F(x))

PROOF : (i) Linearity results from linearity of integration:

∀ω ∈ R F(αx + βy)(ω) =

∫ +∞

−∞
(αx(t) + βy(t))e−iωtdt = α

∫ +∞

−∞
x(t)e−iωtdt + β

∫ +∞

−∞
y(t)e−iωtdt

= αF(x)(ω) + βF(y)(ω)

(ii) By the change of variable t 7→ −t, we get

∀ω ∈ R F(x̃)(ω) =

∫ +∞

−∞
x(−t)e−iωtdt =

∫ +∞

−∞
x(t)e iωtdt =

(∫ +∞

−∞
x∗(t)e−iωtdt

)∗
= F(x)(−ω) = F(x∗)(ω)∗

(iii) By the change of variable t 7→ at, for any ω ∈ R,

F(xa)(ω) =

∫ +∞

−∞
x(at)e−iωtdt =

1

a

∫ +∞

−∞
x(t)e−i

ω
a tdt =

1

a
F(x)

(ω
a

)
(iv) Let two signals x and y . For any ω ∈ R,

F(x ∗ y)(ω) =

∫ +∞

−∞
(x ∗ y)(t)e−iωtdt =

∫ +∞

−∞

∫ +∞

−∞
x(u)e−iωuy(t − u)e−iω(t−u)dtdu

By the change of variable (t, u) 7→ (t, u − t) and Fubini’s theorem, we get:

F(x ∗ y)(ω) =

(∫ +∞

−∞
x(t)e−iωtdt

)(∫ +∞

−∞
y(u)e−iωudu

)
= F(x)(ω)F(y)(ω)

(v) Let a ∈ R and let a signal x . By the change of variable t 7→ t − a

∀ω ∈ R F(τa(x))(ω) =

∫ +∞

−∞
x(t − a)e−iωtdt = e−iωa

∫ +∞

−∞
x(t)e−iωtdt = e−iωaF(x)(ω)

(vi) Let A > 0 and ω ∈ R. An integration by parts yields:∫ A

−A
x ′(t)e−iωtdt =

[
x(t)e−iωt

]A
−A

+ iω

∫ A

−A
x(t)e−iωtdt = x(A)e−iωA − x(−A)e iωA + iω

∫ A

−A
x(t)e−iωtdt

Since x ∈ L2(R,C), lim
A→+∞

x(A) = lim
A→+∞

x(−A) = 0, thus by taking the limit,

F(x ′)(ω) =

∫ +∞

−∞
x ′(t)e−iωtdt = iω

∫ +∞

−∞
x(t)e−iωtdt = iωF(x)(ω)

(vii) By the theorem of differentiation under the integral sign,

∀ω ∈ R (F(x))′ (ω) =

∫ +∞

−∞

∂

∂ω

(
x(t)e−iωt

)
dt =

∫ +∞

−∞
(−it)x(t)e−iωtdt =

∫ +∞

−∞
y(t)e−iωtdt = F(y)(ω)
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1 DEFINITION AND FIRST PROPERTIES

(viii) We prove this property after defining the inverse Fourier transform.

(ix) By property (ix) and by the Fourier transform of a complex exponential,

F(eω0x) =
1

2π
[F(eω0) ∗ F(x)] =

1

2π
[2πδω0 ∗ F(x)] = τω0(F(x))

Remarks:

I Property (iii) shows that an increasing scaling in time corresponds to a decreasing scaling in frequency, and conversely,

which is consistent with the fact that frequency is the inverse of time period.

I Property (iv) applied to ω = 0 yields∫ +∞

−∞
(x ∗ y)(t)dt =

(∫ +∞

−∞
x(t)dt

)(∫ +∞

−∞
y(t)dt

)
which is the integration property seen in the lecture about convolution

I Property (iv) is very important because it shows that Fourier transform turns convolution into a pointwise multiplication

which is easier to work with, which will prove very useful in the study of LTI systems.

Time and frequency integration is a bit more subtle than differentiation. Let a signal x and denote y an antiderivative of x . By

the differentiation property, X (ω) = iωY (ω), which implies that X (0) = 0, thus we can only define the Fourier transform of

antiderivatives of zero-mean signal.

Therefore, consider x1 and x2 two antiderivatives of the same zero-mean signal x , i.e. x ′1 = x ′2 = x . Then there exists

a constant C ∈ C such x2 = x1 + C . By Corollary 2.7, we can write X2(ω) = X1(ω) + 2πCδ(ω). Suppose that x1 is

the zero-mean antiderivative of x , i.e. such that X1(0) =

∫ +∞

−∞
x1(t)dt = 0. By the differentiation property, we can write

X (ω) = iωX1(ω), so that X1(ω) =
X (ω)

iω
and X2(ω) =

X (ω)

iω
+ 2πCδ(ω).

We have the same reasoning for frequency integration: if x1 and x2 are two signals whose spectra X1 et X2 are antiderivatives

of zero-mean X , with
∫ +∞

−∞
X1(ω)dω = 0, then by frequency differentiation, x(t) = −itx1(t), so that x1(t) =

x(t)

−it
=

ix(t)

t

and x2(t) =
x(t)

−it
+ Cδ(t) =

ix(t)

t
+ Cδ(t).

Example 1.1

We introduce the sign function s(t) = sgn(t) = 2Υ(t) − 1 which is equal to 1 for t ≥ 0 and −1 for t < 0. For any

A > 0,
∫ A

−A
s(t)dt = 0, thus

∫ +∞

−∞
s(t)dt = 0. Since s ′ = 2δ, we deduce its Fourier transform S :

S(ω) =
F(2δ)(ω)

iω
=

2

iω

Since Υ(t) =
1

2
s(t)− 1

2
, we deduce the Fourier transform of the Heaviside step function, which is a distribution:

F(Υ)(ω) =
1

iω
− 1

2
δ(ω)

With the same reasoning in the frequency domain, we show that if S(ω) = sgn(ω) then s(t) =
1

−iπt
=

i

πt
.

Remark: In telecommunications, we use the Hilbert transform x̂ of signal x defined by its Fourier transform: X̂ (ω) =

−isgn(ω)X (ω). It means that in the time domain, signal x̂ is the result of the convolution of x with
1

πt
.
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Proposition 1.2

Let x a signal and X its spectrum.

(i) If x is real-valued, then X has a Hermitian symmetry: for any ω ∈ R, X (−ω) = X (ω)∗.

(ii) If x is real-valued and even, then X is also real-valued and even.

PROOF : Property (ii) of Proposition 1.1 shows that F(x̃) = F̃(x) = F(x∗)∗ and F(x∗) = F̃(x)
∗
. If x is real-valued, then

x = x∗, thus F̃(x) = F(x)∗, i.e. for any ω ∈ R, X (−ω) = X (ω)∗.

Moreover, if x is even, then x = x̃ , thus F(x) = F̃(x) = F(x)∗, i.e. X = X̃ = X ∗, therefore X is also real-valued and

even.

Definition 1.2 (Frequency response)

The frequency response of an LTI system L is the Fourier transform of its impulse response h = L(δ), i.e.

∀ω ∈ R H(ω) = F(h)(ω) =

∫ +∞

−∞
h(t)e−iωtdt

Remark: If signal x is the input of this LTI system L, then the Fourier transform of the corresponding output y is, for any

ω ∈ R, Y (ω) = X (ω)H(ω), thus we turned time convolution into frequency multiplication.

Example 1.2

We recall the impulse response of the RC circuit introduced earlier:

∀t ∈ R h(t) =
1

RC
exp

(
− t

RC

)
Υ(t) =

1

τ
exp

(
− t

τ

)
Υ(t)

The frequency response of this system is then

∀ω ∈ R H(ω) =

∫ +∞

−∞
h(t)e−iωtdt =

1

τ

∫ +∞

0

exp
(
− t

τ

)
e−iωtdt =

1

τ

[
− e−( 1

τ +iω)t(
1
τ + iω

) ]+∞
0

=
1

1 + iωτ

2 Table of Fourier transforms

Proposition 2.1

The Fourier transform of the Dirac delta function x(t) = δ is the constant function returning 1:

x = δ ←→ ∀ω ∈ R X (ω) = 1

In general, for any a ∈ R, the Fourier transform of Dirac delta function x(t) = δa(t) = δ(t − a) centered in a is

X (ω) = e−iaω .

x = δa ←→ ∀ω ∈ R X (ω) = e−iaω
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2 TABLE OF FOURIER TRANSFORMS

1

ω

|X (ω)|

0

Arg(X (ω))

ω

− 3π
a −

2π
a
−πa

π
a

2π
a

3π
a

−π

π

PROOF : For any ω ∈ R, X (ω) =

∫ +∞

−∞
δ(t)e−iωtdt = e−iω0 = 1. Then we generalize this result: for x = δa,

X (ω) = e−iaω .

Proposition 2.2

Let a > 0. The Fourier transform of rectangle signal x(t) = Ra(t) = χ[−a,a](t) is

∀ω ∈ R X (ω) =
2 sin(aω)

ω
= 2a sinc(aω)

where sinc denotes the sinc function t 7→ sin(t)

t
.

−a a

1

t

x(t)

0

X (ω)

ω

− 3π
a − 2π

a
−πa

π
a

2π
a

3π
a

2a

PROOF : For any ω ∈ R,

X (ω) =

∫ +∞

−∞
Ra(t)e−iωtdt =

∫ a

−a
e−iωtdt =

[
e−iωt

−iω

]a
−a

=
e iωa − e−iωa

iω
=

2 sin(aω)

ω
= 2a sinc(aω)

Remark: We note y = x ′ = R ′a the derivative of rectangle signal Ra. We can obtain the Fourier transform of y by two

methods. First, for any t ∈ R, y(t) = R ′a(t) = δ−a(t)− δa(t). By linearity of Fourier transform, for any ω ∈ R,

Y (ω) = F(δ−a)(ω)−F(δa)(ω) = e iaω − e−iaω = 2i sin(aω)

Second, using the Fourier transform of the derivative, from the previous proposition, we have for any ω ∈ R,

Y (ω) = F(x ′)(ω) = iωX (ω) = iω
2 sin(aω)

ω
= 2i sin(aω)
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Proposition 2.3

Let a > 0. The Fourier transform of triangle signal x(t) = Ta(t) is

∀ω ∈ R X (ω) =
4

ω2
sin2

(aω
2

)
= a2 sinc2

(aω
2

)

−a a

a

t

x(t)

0

X (ω)

ω

− 3π
2a

−πa − π
2a

π
2a

π
a

3π
2a

a2

PROOF : We have seen in the lecture about convolution that signal Ta is the convolution of rectangle signal R a
2

with itself:

Ta = R a
2
∗ R a

2
. Using the Fourier transform of convolution, we get:

F(Ta)(ω) = F(R a
2
∗ R a

2
)(ω) = F(R a

2
)(ω)2 =

4

ω2
sin2

(aω
2

)
= a2 sinc2

(aω
2

)
Proposition 2.4

Let a > 0. The Fourier transform of exponential x(t) = e−a|t| is:

∀ω ∈ R X (ω) =
2a

a2 + ω2

0

1

t

x(t)

0

2
a

ω

X (ω)

PROOF : For x(t) = e−a|t|, we have X (ω) =

∫ +∞

−∞
e−a|t|e−iωtdt = 2

∫ +∞

0

e−at cos(ωt)dt. A double integration by

parts gives: ∫ +∞

0

e−at cos(ωt)dt =
a

ω2
− a2

ω2

∫ +∞

0

e−at cos(ωt)dt

thus X (ω) =
2

ω2

1

1 + a2

ω2

=
2a

a2 + ω2
.
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Proposition 2.5

Let a > 0. The Fourier transform of gaussian x(t) = e−at
2

is:

∀ω ∈ R X (ω) =

√
π

a
e−

ω2

4a

0

1

t

x(t)

0

√
π
a

ω

X (ω)

PROOF : We have X (ω) =

∫ +∞

−∞
e−at

2

e−iωtdt. Since

at2 + iωt = a
(
t2 + i

ω

a
t
)

= a
(
t + i

ω

2a

)2
+
ω2

4a

by the change of variable t 7→ t − iω

2a
et t 7→

√
at, and by the definition of Gauss’ integral

∫ +∞

−∞
e−t

2

dt =
√
π, we get

X (ω) = e−
ω2

4a

∫ +∞

−∞
exp

(
−a
(
t +

iω

2a

)2
)
dt = e−

ω2

4a

∫ +∞

−∞
e−at

2

dt =

√
π

a
e−

ω2

4a

Remark: It is important to note that the Fourier transform of a gaussian is also a gaussian. This implies that the inverse

Fourier transform of a gaussian is a gaussian. This property will be a cornerstone in our definition of the inverse Fourier

transform.

Proposition 2.6

For any ω0 ∈ R, the Fourier transform of complex exponential x(t) = e iω0t is:

∀ω ∈ R X (ω) = 2πδ(ω − ω0)

ω0

2π

ω

X (ω)
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For any ω0 ∈ R, the Fourier transform of cosine x(t) = cos(ω0t) is:

∀ω ∈ R X (ω) = πδ(ω − ω0) + πδ(ω + ω0)

−ω0 ω0

π

ω

X (ω)

PROOF : This proposition is proved in the next section, once we have introduced the inverse Fourier transform.

Corollary 2.7

Using this property with ω0 = 0, we show that the Fourier transform of constant signal x : t 7→ 1 is X (ω) = 2πδ(ω), and

by linearity, the Fourier transform of constant signal x : t 7→ C is X (ω) = 2πCδ(ω).

Remark: Let x a periodic signal with period T0, and let (cn(x))n∈Z its Fourier coefficients, i.e. for any t ∈ R, x(t) =
+∞∑

n=−∞
cn(x)e inω0t . By linearity of the Fourier transform, spectrum X = F(x) can be written:

∀ω ∈ R X (ω) =
+∞∑

n=−∞
cn(x)F (enω0) (ω) = 2π

+∞∑
n=−∞

cn(x)δ(ω − nω0)

This identity connects Fourier series and Fourier transform. Indeed, a Fourier series is a particular case of discrete Fourier

transform represented by Dirac delta functions.

3 Inverse Fourier transform

In this section, we express a time signal x(t) as a function of its spectrum X (ω), to define the inverse Fourier transform.

Definition 3.1 (Gaussian mollifier)

The Gaussian mollifier is the sequence of functions defined for any n ∈ N by:

ϕn : R→ R t 7→ n√
π
e−n

2t2

Lemma 3.1

The limit of sequence (ϕn)n∈N is the Dirac delta function.
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PROOF : Denote ϕ the limit of (ϕn)n∈N. Then for any t ∈ R∗, lim
n→+∞

ne−n
2t2 = 0 thus ϕ(t) = 0. Moreover, ϕn(0) =

n√
π

thus ϕ(0) = +∞. Finally, we define the following linear forms:

∀n ∈ N Ln : x 7→
∫ +∞

−∞
ϕn(t)x(t)dt L : x 7→

∫ +∞

−∞
ϕ(t)x(t)dt

Let x be a continuous signal in 0 and bounded over R; and let ε > 0. There exists η > 0 such that for any t ∈] − η, η[,

|x(t)− x(0)| ≤ ε

2
. Then for any n ∈ N,

|Ln(x)− x(0)| =

∣∣∣∣∫ +∞

−∞
ϕn(t)x(t)dt − x(0)

∣∣∣∣ ≤ ∫ +∞

−∞
ϕn(t)|x(t)− x(0)|dt

=

∫ η

−η
ϕn(t)|x(t)− x(0)|dt +

∫
|t|>η

ϕn(t)|x(t)− x(0)|dt

≤ ε

2
+ 2 sup

t∈R
|x(t)|

∫
|t|>η

ϕn(t)dt

Now

lim
n→+∞

∫ η

−η
ϕn(t)dt = lim

n→+∞

n√
π

∫ η

−η
e−n

2t2dt = lim
n→+∞

1√
π

∫ nη

−nη
e−t

2

dt =
1√
π

∫ +∞

−∞
e−t

2

dt = 1

thus lim
n→+∞

∫
|t|>η

ϕn(t)dt = 0, and there exists an index N ∈ N such that for any n ≥ N , 2 sup
t∈R
|x(t)|

∫
|t|>η

ϕn(t)dt ≤ ε

2
and |Ln(x)− x(0)| ≤ ε. Hence sequence (Ln(x))n∈N converges to x(0), and L is the linear form x 7→ x(0), corresponding

to the Dirac delta function, thus ϕ = δ.

Remark: This lemma can be translated in terms of probabilities. Indeed, for any n ∈ N∗, ϕn is the probability density

function of a zero-mean gaussian random variable Xn with standard deviation σn =
1√
2n

. The sequence of gaussian

random variables (Xn)n∈N∗ converges in law to X , a zero-mean gaussian random variable with zero variance, i.e. X is the

random variable equal to zero almost surely, whose probability distribution is Dirac delta function.

We express ϕn as a function of its Fourier transform Φn by replacing e−iωt by e iωt in the integral. Using the Fourier transform

of a gaussian, we notice that for any a ∈ R ∫ +∞

−∞
e−aω

2

e iωtdω =

√
π

a
e−

t2

4a

In particular, taking a =
1

4n2
,

∫ +∞

−∞
e−

ω2

4n2 e iωtdω = 2n
√
πe−n

2t2 = 2πϕn(t)

Setting Φn : ω 7→ e−
ω2

4n2 , we have

Φn(ω) =

∫ +∞

−∞
ϕn(t)e−iωtdt ϕn(t) =

1

2π

∫ +∞

−∞
Φn(ω)e iωtdω (∗)

Lemma 3.2

Let a signal x and its Fourier transform X = F(x). Then for any t ∈ R,

(ϕn ∗ x)(t) =
1

2π

∫ +∞

−∞
Φn(ω)X (ω)e iωtdω
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3 INVERSE FOURIER TRANSFORM

PROOF : By definition of convolution and from (∗),

∀t ∈ R (ϕn ∗ x)(t) =
1

2π

∫ +∞

−∞

(∫ +∞

−∞
Φn(ω)e iωudω

)
x(t − u)du

Then by the change of variable u 7→ t − u,

(ϕn ∗ x)(t) =
1

2π

∫ +∞

−∞

(∫ +∞

−∞
x(t − u)e iωudu

)
Φn(ω)dω =

1

2π

∫ +∞

−∞

(∫ +∞

−∞
x(u)e iω(t−u)du

)
Φn(ω)dω

Finally,

(ϕn ∗ x)(t) =
1

2π

∫ +∞

−∞

(∫ +∞

−∞
x(u)e−iωudu

)
Φn(ω)e iωtdω =

1

2π

∫ +∞

−∞
X (ω)Φn(ω)e iωtdω

Theorem 3.3

Let a signal x and its Fourier transform X = F(x). Then for any t ∈ R,

x(t) =
1

2π

∫ +∞

−∞
X (ω)e iωtdω

With this identity, we define the inverse Fourier transform F−1 : X 7→ x .

PROOF : From the previous lemma,

∀t ∈ R (ϕn ∗ x)(t) =
1

2π

∫ +∞

−∞
Φn(ω)X (ω)e iωtdω

Since the Dirac delta function is the limit of sequence (ϕn), the dominated convergence theorem implies:

lim
n→+∞

(ϕn ∗ x)(t) = (δ ∗ x)(t) = x(t) =
1

2π

∫ +∞

−∞

(
lim

n→+∞
Φn(ω)

)
X (ω)e iωtdω =

1

2π

∫ +∞

−∞
X (ω)e iωtdω

Remark: If we express Fourier transform in terms of frequency f , the relations between a signal and its spectrum become:

X (f ) =

∫ +∞

−∞
x(t)e−i2πftdt x(t) =

∫ +∞

−∞
X (f )e i2πftdf

In this case, factor
1

2π
vanishes in the expression of the inverse Fourier transform.

With our definition of inverse Fourier transform, we can now write the missing proofs of the properties in the previous section.

PROOF : (PROPOSITION 1.1, (VIII)) Let two signals x and y and their respective Fourier transforms X and Y . Let Z = X ∗Y
and z the corresponding signal. Then for any t ∈ R,

z(t) =
1

2π

∫ +∞

−∞
(X ∗ Y )(ω)e iωtdω =

1

2π

∫ +∞

−∞

(∫ +∞

−∞
X (u)Y (ω − u)du

)
e iωtdω

By the change of variable (u,ω) 7→ (u,ω − u) and by Fubini’s theorem:

z(t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
X (u)e iutY (ω − u)e i(ω−u)tdωdu =

1

2π

(∫ +∞

−∞
X (u)e iutdu

)(∫ +∞

−∞
Y (ω)e iωtdω

)
= 2πx(t)y(t)
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3 INVERSE FOURIER TRANSFORM

By the linearity of the Fourier transform,

F(xy)(ω) =
1

2π
F(z)(ω) =

1

2π
[F(x) ∗ F(y)] (ω)

PROOF : (PROPOSITION 2.6) If X (ω) = δω0(ω), then

x(t) =
1

2π

∫ +∞

−∞
δω0(ω)e iωtdω =

1

2π
e iω0t

thus by linearity of the Fourier transform, F(eω0)(ω) = 2πδω0(ω) = 2πδ(ω − ω0).

Replacing ω0 by −ω0, F(e−ω0)(ω) = 2πδ(ω + ω0). Using the linearity of Fourier transform and Euler’s identity cω0 =
eω0 + e−ω0

2
, we get F(cω0)(ω) = πδ(ω − ω0) + πδ(ω + ω0).

Theorem 3.4 (Plancherel’s identity)

Let a square-integrable signal x and its Fourier transform X = F(x). Then

∫ +∞

−∞
|x(t)|2dt =

1

2π

∫ +∞

−∞
|X (ω)|2dω

PROOF : We recognize in the left member the energy of x :∫ +∞

−∞
|x(t)|2dt = E (x) = γx(0) = (x ∗ x̃)(0)

with x̃ : t 7→ x∗(−t). Set y = (x ∗ x̃) and Y = F(y) its Fourier transform, so that

∀t ∈ R y(t) =
1

2π

∫ +∞

−∞
Y (ω)e iωtdω et E (x) = y(0) =

1

2π

∫ +∞

−∞
Y (ω)dω

Applying property (ii) of Proposition 1.1, we can write F(x̃) = F(x)∗. Thus we have Y (ω) = F(x ∗ x̃)(ω) =

F(x)(ω)F(x̃)(ω) = X (ω)X ∗(ω) = |X (ω)|2. We deduce that:∫ +∞

−∞
|x(t)|2dt = y(0) =

1

2π

∫ +∞

−∞
Y (ω)dω =

1

2π

∫ +∞

−∞
|X (ω)|2dω

Remark: Plancherel’s identity will be the starter of our discussion about time-frequency duality.
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